Multiscale Entropy Analysis of Complex Heart Rate Dynamics: Discrimination of Age and Heart Failure Effects
نویسنده
چکیده
Quantifying the complexity of physiologic time series has been of considerable interest. Several entropybased measures have been proposed, although there is no straightforward correspondence between entropy and complexity. These traditional algorithms may generate misleading results because an increase in system entropy is not always associated with an increase in its complexity, and because the algorithms are based on single time scales. Recently, we introduced a new method, multiscale entropy (MSE) analysis, to calculate entropy over a wide range of scales. In this study, we sought to determine whether loss of complexity due to aging could be distinguished from that due to major cardiac pathology. We analyzed RR time series from young subjects (n=26), elderly subjects (n=46) and subjects with congestive heart failure (n=43). The mean MSE measures of each of the three groups revealed characteristic curves, suggesting that they capture fundamental changes in the heart rate dynamics due to age and disease. We used Fisher’s linear discriminant to evaluate the use of MSE features for classification. In discriminant tests on the training data, we found that MSE features could separate elderly, young and heart failure subjects with 92% accuracy and that older healthy subjects (mean age=65.9) could be separated from subjects with heart failure (mean age=55.5) with 94% accuracy. Also, we discriminated data from heart failure subjects and elderly healthy subjects with a positive predictivity of 76% and a specificity of 83% using only the MSE features. Larger databases will be needed to confirm if automatic classification results can match separation results. We conclude that MSE features capture differences in complexity due to aging and heart failure. These differences have implications for modeling neuroautonomic perturbations in health and disease.
منابع مشابه
A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملReduced Data Dualscale Entropy Analysis of HRV Signals for Improved Congestive Heart Failure Detection
Heart rate variability (HRV) is an important dynamic variable of the cardiovascular system, which operates on multiple time scales. In this study, Multiscale entropy (MSE) analysis is applied to HRV signals taken from Physiobank to discriminate Congestive Heart Failure (CHF) patients from healthy young and elderly subjects. The discrimination power of the MSE method is decreased as the amount o...
متن کاملMultiscale analysis of heart rate, blood pressure and respiration time series
We present the multiscale entropy analysis of short term physiological time series of simultaneously acquired samples of heart rate, blood pressure and lung volume, from healthy subjects and from subjects with Chronic Heart Failure. Evaluating the complexity of signals at the multiple time scales inherent in physiologic dynamics, we find that healthy subjects show more complex time series at la...
متن کاملEffect of endotoxemia on heart rate dynamics in rat isolated perfused hearts
Introduction: Beat-to-beat variation in heart rate shows a complex dynamics, and this complexity is changed during systemic inflammatory response syndrome (e.g. sepsis). It is not known whether or not cardiac pacemaker dynamical rhythm is affected by sepsis. The aim of this study was to investigate heart rate dynamics of isolated heart as well as expression of pacemaker channels (HCN) in a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002